High Tech, High Touch

Search
Close
Search
 
  • home
  • 교수소개
  • 전임교수

교수소개

전임교수

  • 부교수 Software
  • 타메르 홈페이지 바로가기
    Lab Engineering 2 (27) 5F 27501

관심분야

- Information security
- Data Science
- ML/DL for Healthcare Applications

학력

  • 박사과정, 정보통신대학원, 인하대학교

학술지 논문

  • (2024)  Hardening Interpretable Deep Learning Systems: Investigating Adversarial Threats and Defenses.  IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING.  21,  4
  • (2024)  MotionID: Towards practical behavioral biometrics-based implicit user authentication on smartphones.  PERVASIVE AND MOBILE COMPUTING.  101, 
  • (2024)  Information fusion-based Bayesian optimized heterogeneous deep ensemble model based on longitudinal neuroimaging data.  APPLIED SOFT COMPUTING.  162,  1
  • (2024)  SingleADV: Single-Class Target-Specific Attack Against Interpretable Deep Learning Systems.  IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY.  19,  1
  • (2023)  Time-series visual explainability for Alzheimer's disease progression detection for smart healthcare.  ALEXANDRIA ENGINEERING JOURNAL.  82,  1
  • (2023)  Trustworthy artificial intelligence in Alzheimer’s disease: state of the art, opportunities, and challenges.  ARTIFICIAL INTELLIGENCE REVIEW.  56,  10
  • (2023)  Wildfire Susceptibility Mapping Using Deep Learning Algorithms in Two Satellite Imagery Dataset.  FORESTS.  14,  7
  • (2023)  Effective Multitask Deep Learning for IoT Malware Detection and Identification Using Behavioral Traffic Analysis.  IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT.  20,  2
  • (2023)  Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence.  INFORMATION FUSION.  99,  1
  • (2023)  Explainable machine learning models based on multimodal time-series data for the early detection of Parkinson?s disease.  COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE.  234,  1
  • (2023)  Trustworthy artificial intelligence in Alzheimer's disease: state of the art, opportunities, and challenges.  ARTIFICIAL INTELLIGENCE REVIEW.  56,  10
  • (2023)  Prediction of Alzheimer's progression based on multimodal Deep-Learning-based fusion and visual Explainability of time-series data.  INFORMATION FUSION.  92,  1
  • (2022)  Multilayer dynamic ensemble model for intensive care unit mortality prediction of neonate patients.  JOURNAL OF BIOMEDICAL INFORMATICS.  135,  -
  • (2022)  Automatic detection of Alzheimer?s disease progression: An efficient information fusion approach with heterogeneous ensemble classifiers.  NEUROCOMPUTING.  512,  -
  • (2022)  Multitask Deep Learning for Cost-Effective Prediction of Patient's Length of Stay and Readmission State Using Multimodal Physical Activity Sensory Data.  IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS.  26,  12
  • (2021)  Large-scale and Robust Code Authorship Identification with Deep Feature Learning.  ACM TRANSACTIONS ON PRIVACY AND SECURITY.  24,  4
  • (2021)  Robust hybrid deep learning models for Alzheimer's progression detection.  KNOWLEDGE-BASED SYSTEMS.  213,  1
  • (2021)  Alzheimer's disease progression detection model based on an early fusion of cost-effective multimodal data.  FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE.  115,  1
  • (2020)  Multimodal multitask deep learning model for Alzheimer's disease progression detection based on time series data.  NEUROCOMPUTING.  412,  -
  • (2020)  AUToSen: Deep-Learning-Based Implicit Continuous Authentication Using Smartphone Sensors.  IEEE INTERNET OF THINGS JOURNAL.  7,  6

학술회의논문

  • (2024)  The Impact of Model Variations on the Robustness of Deep Learning Models in Adversarial Settings.  Silicon Valley Cybersecurity Conference.  미국
  • (2024)  Unmasking the Vulnerabilities of Deep Learning Models: A Multi-Dimensional Analysis of Adversarial Attacks and Defenses.  Silicon Valley Cybersecurity Conference.  미국
  • (2022)  Black-box and Target-specific Attack Against Interpretable Deep Learning Systems.  Asia Conference on Computer and Communications Security (ASIA CCS).  일본
  • (2022)  Depth, Breadth, and Complexity: Ways to Attack and Defend Deep Learning Models.  Asia Conference on Computer and Communications Security (ASIA CCS).  일본
  • (2022)  Leveraging Spectral Representations of Control Flow Graphs for Efficient Analysis of Windows Malware.  Asia Conference on Computer and Communications Security (ASIA CCS '22).  일본
  • (2022)  MLxPack: Investigating the Effects of Packers on ML-based Malware Detection Systems Using Static and Dynamic Traits.  Asia CCS Workshop on Cybersecurity and Social Sciences (CySSS '22).  일본
  • (2021)  AdvEdge: Optimizing Adversarial Perturbations Against Interpretable Deep Learning.  The 10th Int conf on Computational Data and Social Networks (CSoNet'21).  캐나다
  • (2020)  Alzheimer Disease Prediction Model Based on Decision Fusion of CNN-BiLSTM Deep Neural Networks.  Intelligent Systems and Applications (IntelliSys 2020).  네덜란드
  • (2020)  Multi-χ: Identifying Multiple Authors from Source Code Files.  The 20th Privacy Enhancing Technologies Symposium (PETS2020).  캐나다